

Available online at www.sciencedirect.com

Journal ofOrgano metallic Chemistry

Journal of Organometallic Chemistry 689 (2004) 1350-1354

www.elsevier.com/locate/jorganchem

Note

The thermally stable silylene Si[$(NCH_2Bu^t)_2C_6H_4-1,2$]: reaction with pyridine and quinoline

Barbara Gehrhus *, Peter B. Hitchcock

Department of Chemistry, School of Life Science, University of Sussex, Falmer, Brighton BN1 9QJ, UK

Received 10 November 2003; accepted 16 December 2003

Abstract

Two equivalents of the thermally stable silylene Si[(NCH₂Bu^t)₂C₆H₄-1,2] (1) react with pyridine to yield the 1-aza-2,3-disilacyclobutane derivative (2), which is labile and slowly rearranges via a 1,3-H shift to the 2-pyridyldisilane (3). A similar reaction of 1 with quinoline gives 1-aza-2,3-disilacyclobutane derivative (4), which is stable. The X-ray structures of 2 and 3 are discussed. © 2004 Elsevier B.V. All rights reserved.

Keywords: Silylene; Addition; Heterocycles

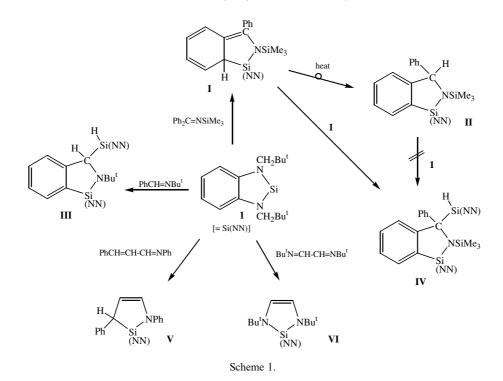
1. Introduction

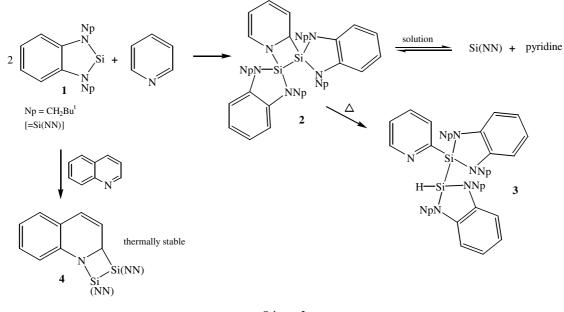
The chemistry of silylenes, the two-valent and twocoordinate analogues of carbenes, has attracted increasing attention in recent years with the discovery of thermally stable bis(amino)silylenes Si[(NBu^t)CHCH (NBu^{t}) [1], Si[$(NBu^{t})CH_{2}CH_{2}(NBu^{t})$] [2] and Si $[(NCH_2Bu^t)_2C_6H_4-1,2]$ [3], and the first isolable bis (alkyl)silylene Si[C(SiMe₃)₂CH₂CH₂C(SiMe₃)₂] [4]. The bis(amino)silylenes show a great variety of reactions, which were summarised in two review articles [5,6]. Among those reactions are addition reactions to unsaturated organic compounds, which lead in the majority of cases to interesting new silicon containing heterocycles. In a recent article we reported on the reactivity of $Si[(NCH_2Bu^t)_2C_6H_4-1,2]$ (1) [abbr. as Si(NN)] towards compounds containing CN double bonds [7]. We found that the reactions of 1 with various imines yielded the tetravalent silicon compounds I-VI (Scheme 1).

We now present data on the reactions of the silylene **1** with compounds in which the CN double bond is constituent of a heteroaromatic compound, specifically with pyridine and quinoline. Interestingly, it was reported

that the silylene Si[(NBu^t)CHCH(NBu^t)] was unreactive towards pyridine [1].

2. Results and discussion


Treatment of the silylene 1 with pyridine in a 1:1 ratio or an excess pyridine afforded the crystalline compound 2 (Scheme 2). The latter, however, is not stable in solution and partially (to about 60%) dissociates into its factors. The ¹H, ¹³C and ²⁹Si NMR spectroscopic data of a C₆D₆ or CD₃C₆D₅ solution of 2 show signals assigned to pyridine, 1 and 2. At elevated temperature, a solution of 2 was converted into compound 3. The reaction of 1 with quinoline yielded compound 4, which in contrast to 2 did not dissociate in solution and was thermally stable (Scheme 2).


Each of the yellow, crystalline compounds 2-4 was characterised by multinuclear NMR spectroscopy, electron impact mass spectrometry (parent ions observed) (not 2) and microanalysis (not for 2).

The molecular structures, determined by single-crystal X-ray diffraction, provide additional evidence for the formation of compound **2** and **3**, and are shown in (Figs. 1 and 2); selected bond lengths and angles are listed in (Tables 1 and 2), respectively. In accordance with the addition of two silylene units to the CN double bond of pyridine the planarity of the C_5N ring in

^{*}Corresponding author. Tel.: +4412736067553365; fax: +441273677196.

E-mail address: b.gehrhus@sussex.ac.uk (B. Gehrhus).

compound **2** is lost; the atom C(33) is disordered 0.87:0.13 over two positions displaced on either side of the C₄N plane. The N–C bonds in the C₅N ring show further a significantly shorter N(5)–C(37) than N(5)–C(33) bond [1.386(3) and 1.486(3) Å, respectively]; there probably is some π -electron interaction of the neighbouring C–C double bond with the lone pair at the planar N(5) (sum of angles at N 359.95°). The Si(1)–Si(2) bond length of 2.3717(9) Å is similar to that in related four-membered Si–Si–C–O [2.352(3) Å] [8] or Si–

Si–C=N [2.385(3) Å] [9] ring structures. The Si(1)–Si(2) bond in compound **3** is much longer [2.4056(8) Å], but shorter than in the disilane [{ $C_6H_4(NCH_2Bu^t)_2$ -1,2}Si(Bu^t)]_2 [2.465(7) Å] [10]. All other structural parameters of compound **2** and **3** are unexceptional.

The formation of the bi- 2 or tricyclic 4 compounds probably proceeded via a three-membered intermediate VII, or its quinoline-based analogue, followed by insertion of 1 into the C–Si or N–Si bond. This sequence of addition of 1 to a multiply bond, followed by

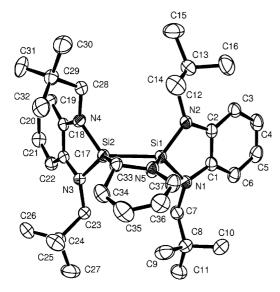


Fig. 1. Molecular structure of compound 2.

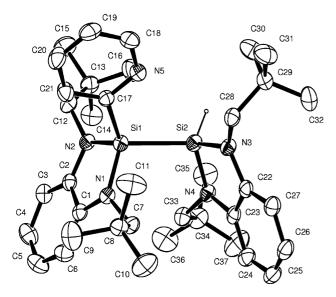
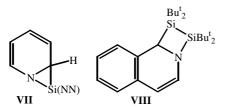



Fig. 2. Molecular structure of compound 3.

insertion of 1 into the resulting intermediate, is already well documented [5]. A reaction as its dimer $(1)_2$ is ruled out, since 1 is monomeric both in solution and in the solid state [3,11].

As for the transformation $2 \rightarrow 3$ (but not 4), the instability of 2 is probably a result of the driving force for the rearomatisation of the pyridine ring via 1,3-H migration; quinoline has less aromatic stabilisation than

Table 1	
Selected bond lengths (Å)	and angles (°) for 2 and 3

	2	3
Si(1)–Si(2)	2.3717(9)	2.4056(8)
Si(1)–N(1)	1.734(2)	1.7386(17)
Si(1)-N(2)	1.737(2)	1.7451(17)
Si(2)-N(3)	1.738(2)	1.7455(17)
Si(2)-N(4)	1.729(2)	1.7502(17)
Si(1)-N(5)	1.749(2)	
Si(2)-C(33)	1.940(3)	
N(5)-C(33)	1.486(3)	
N(5)-C(37)	1.386(3)	
Si(1)-C(17)		1.880(2)
N(1)-Si(1)-N(2)	92.63(10)	93.05(8)
N(3)-Si(2)-N(4)	92.01(10)	92.37(8)
N(5)-Si(1)-Si(2)	75.10(7)	
N(5)-C(33)-Si(2)	95.8(2)	
C(33)–Si(2)–Si(1)	76.16(8)	
C(33)–N(5)–Si(1)	111.6(2)	

Table 2Crystal data and refinement for complexes 2 and 3

	2	3
Formula	C37H57N5Si2	C37H57N5Si2
Molecular weight	628.06	628.06
Crystal system	Triclinic	Monoclinic
Space group	<i>P</i> 1 (No. 2)	C2/c (No. 15)
a (Å)	9.9192(6)	38.7395(9)
b (Å)	10.8109(4)	10.3366(3)
c (Å)	17.7530(10)	19.4891(5)
α (°)	86.500(3)	90
β (°)	79.710(3)	109.149(2)
γ (°)	80.359(4)	90
$U(\text{\AA}^3)$	1845.7(2)	7372.3(3)
Z	2	8
Reflections collected	20,421	28,452
Unique reflections (R_{int})	6453 (0.06)	8728 (0.06)
Reflections with $I > 2\sigma(I)$	4866	6075
Data/restraints/ parameters	6453/0/410	8728/0/402
Goodness-of-fit on F^2	1.057	1.028
Final R indices	$R_1 = 0.056,$	$R_1 = 0.058,$
$[I > 2\sigma(I)]$	$wR_2 = 0.129$	$wR_2 = 0.122$
R indices (all data)	$R_1 = 0.081,$	$R_1 = 0.096,$
	$wR_2 = 0.140$	$wR_2 = 0.138$

pyridine. Likewise, the partial dissociation of 2 into its factors in solution is also attributed to the drive for rearomatisation of the pyridine ring [14].

A similar product to **4** has been reported, obtained by reaction of tetra-*tert*-butyldisilene and isoquinoline leading to the 1-aza-2,3-disiletane derivative **VIII** [12]. Transient silylenes are also known to give interesting new products with organic substrates containing a CN multiple bond, as has recently been summarised [7,9].

3. Experimental

All operations and manipulations were carried out under purified argon, by conventional Schlenk techniques. Solvents were dried and degassed before use. The NMR spectra were recorded in benzene-d₆ or toluene-d₈ using Bruker Instruments: Bruker DPX 300 (¹H and ¹³C) and AMX 500 (¹H and ²⁹Si), and referenced internally to residual solvent resonances or externally (²⁹Si) to SiMe₄ (data in δ). Microanalyses were carried out by Medac Ltd. (Brunel University). Electron impact mass spectra were taken from solid samples using a Kratos MS 80 RF instrument. Melting points were taken in sealed capillaries and are uncorrected.

3.1. Preparation of 2

A solution of 1 (0.32 g, 1.17 mmol) in benzene (10 ml) was slowly added to a solution of pyridine (0.1 ml) in benzene (10 ml). After stirring for 16 h, the solvent was removed in vacuo and the remaining solid was dissolved in *n*-hexane. Cooling at -25 °C afforded 0.28 g (76.5 % yield) of yellow crystals of 2; m.p. 101–103 °C. ¹H NMR (CD₃C₆D₅, 500 MHz, 298 K): δ 0.86, 0.97, 0.98 and 1.0 (4 s, 36 H, CH₃), 2.99–3.67 (m, 8 H, CH₂), 3.79 (br s, 1 H, SiCH), 5.22–5.25 (m, 2 H, $2 \times$ CH), 5.79 (sept, 1 H, CH), 6.47 (br d, 1 H, CH), 6.61–6.77 (m, 8 H, phenyl). ¹³C{¹H} NMR (C₆D₆, 75.46 MHz, 293 K): δ 29.3, 29.6 and 29.9 (CMe₃), 34.1, 34.4, 34.7 and 34.9 (CMe₃), 53.2 and 56.1 (br, CH₂), 50.4 (SiCH), 109.5, 109.8, 111.0, 117.7, 118.0, 118.5, 124.9, 135.8, 140.1 and 140.5 (phenyl). ²⁹Si{¹H} NMR (CD₃C₆D₅, 99.33 MHz, 293 K): δ 0.8 and 33.1 (br). The solution of 2 also showed signals of the parent silvlene 1 and pyridine.

3.2. Preparation of 3

Compound 2 (0.23 g, 0.367 mmol) was dissolved in benzene (10 ml) and heated at 70 °C for 2 days. The solvent was removed in vacuo and the remaining solid was recrystallised from n-hexane/benzene to afford 0.16 g (69.6% yield) of yellow crystals of 3; m.p. 143–145 °C. ¹H NMR (C₆D₆, 300 MHz, 293 K): δ 0.72 (s, 18 H, CH₃), 1.04 (s, 18 H, CH₃), 2.88, 2.93, 2.97 and 3.02 (ABtype, 4 H, CH₂), 3.09, 3.14, 3.2 and 3.25 (AB-type, 4 H, CH₂), 6.6–6.94 (m, 8 H, phenyl) 7.14–7.18 (m, 3 H, pyridyl), 8.58 (dt, 1 H, NCH) and 7.12 (s, 1 H, SiH, ${}^{1}J_{HSi}$ 230.9 Hz, ${}^{2}J_{HSi}$ 39.84 Hz). ${}^{13}C{}^{1}H$ NMR (C₆D₆, 75.46 MHz, 293 K): δ 28.5 and 28.8 (CMe₃), 33.5 and 35.4 (CMe₃), 54.3 and 57.5 (CH₂), 109.2, 109.8, 117.4, 118.3, 142.1 and 142.9 (phenyl), 124.7, 131.1, 134.7 and 149.4 (pyridyl). ²⁹Si{¹H} NMR (C₆D₆, 99.33 MHz, 293 K): δ -7.0 (¹ J_{SiH} 229.2 Hz), -7.3 (² J_{SiH} 40.9 Hz). MS m/z(%) = 627 (43) [M⁺]. Anal. Calc. for $C_{37}H_{57}N_5Si_2$ (628.05): C, 70.76; H, 9.15; N, 11.15. Found: C, 70.1; H, 8.98; N, 11.32%.

3.3. Preparation of 4

Quinoline (0.112 ml, 0.95 mmol) was added to a solution of 1 (0.26 g, 0.95 mmol) in benzene (20 ml) and stirred over night at ambient temperature. The solvent was removed in vacuo and the remaining solid was dissolved in *n*-hexane, filtered and cooled to -25 °C to afford 0.28 g (87.5 % yield) of yellow crystals of 4; m.p. 165–167 °C. ^{1}H NMR (CD₃C₆D₅, 500 MHz, 228 K): δ 0.81, 0.86 (2 s, 18 H, CH₃), 1.03 (s, 18 H, CH₃), 2.84, 2.87, 3.03, 3.06, 3.11, 3.14, 3.17, 3.22, 3.25, 3.34 and 3.37 (AB-type overlapped, 8 H, CH₂), 4.48 (s, 1 H, SiCH), 5.95 (d, 1 H, CH) and 6.11 (d, 1 H, CH), 6.52-7.08 (m, 14 H, phenyl). ¹³C{¹H} NMR (CD₃C₆D₅, 75.46 MHz, 293 K): *δ* 28.7, 29.0, 29.4 and 30.1 (CMe₃), 34.0, 34.5, 34.7 and 35.0 (CMe₃), 51.4 (SiCH), 53.1, 55.1, 56.7 and 57.1 (CH₂), 109.6, 110.1, 110.6, 111.0, 117.7, 118.0, 118.2, 119.7, 121.8, 125.1, 126.2, 126.4, 127.0, 127.5, 128.3, 139.9, 140.8, 141.1 and 144.3. ²⁹Si{¹H} NMR (CD₃C₆D₅, 99.33 MHz, 298 K): δ -1.7 and 33.5. MS m/z (%) = 677 (10) [M⁺]. Anal. Calc. for C₄₁H₅₉N₅Si₂ (678.11): C, 72.6; H, 8.77; N, 10.33. Found: C, 71.9; H, 8.43; N, 10.59%.

3.4. X-ray structure determinations for the complexes 2 and 3

Data for the crystal structure determinations were collected on a Kappa CCD diffractometer at 173(2) K using monochromated Mo-K α radiation (λ 0.71073 Å). The structures were solved by direct methods and refined by full-matrix least-squares on F^2 using SHELXL 97 [13], with all non-H atoms anisotropic; for **3** the H atom on Si(2) was freely refined. Crystal data and refinement details are listed in Table 2.

4. Supplementary material

Crystallographic data for the structural analysis have been deposited with the Cambridge Crystallographic Data centre, CCDC No. 223698 for compound **2**, CCDC No. 223699 for compound **3**. Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44-1223-336033; e-mail: deposit@ccdc.cam. ac.uk or www: http://www.ccdc.cam.ac.uk).

Acknowledgements

We thank the EPSRC for an EPSRC Advanced Fellowship for B.G.

References

[1] M. Denk, R. Lennon, R. Hayashi, R. West, A.V. Belyakov, H.P. Verne, A. Haaland, M. Wagner, N. Metzler, J. Am. Chem. Soc. 116 (1994) 2691.

- [2] T.A. Schmedake, M. Haaf, Y. Apeloig, T. Müller, S. Bukalov, R. West, J. Am. Chem. Soc. 121 (1999) 9479.
- [3] B. Gehrhus, M.F. Lappert, J. Heinicke, R. Boese, D. Bläser, J. Chem. Soc., Chem. Commun. (1995) 1931.
- [4] M. Kira, S. Ishida, T. Iwamoto, C. Kabuto, J. Am. Chem. Soc. 121 (1999) 9722.
- [5] B. Gehrhus, M.F. Lappert, J. Organomet. Chem. 617 (2001) 209.
- [6] M. Haaf, T.A. Schmedake, R. West, Acc. Chem. Res. 33 (2000) 704.
- [7] B. Gehrhus, P.B. Hitchcock, M.F. Lappert, Organometallics 17 (1998) 1378.
- [8] B. Gehrhus, P.B. Hitchcock, M.F. Lappert, Organometallics 16 (1997) 4861.

- [9] B. Gehrhus, P.B. Hitchcock, M.F. Lappert, Z. Anorg. Allg. Chem. 627 (2001) 1048.
- [10] X. Cai, B. Gehrhus, P.B. Hitchcock, M.F. Lappert, J.C. Slootweg, J. Organomet. Chem. 651 (2002) 150.
- [11] R. West, J.J. Buffy, M. Haaf, T. Müller, B. Gehrhus, M.F. Lappert, Y. Apeloig, J. Am. Chem. Soc. 120 (1998) 1639.
- [12] M. Weidenbruch, A. Lesch, K. Peters, H.G. von Schnering, Chem. Ber. 123 (1990) 1795.
- [13] G.M. Sheldrick, SHELXL 97, Program for Crystal Structure Refinement, University of Göttingen, Germany, 1997.
- [14] A reviewer pointed out that the transformation $2 \rightarrow 3$ might be base catalysed. This cannot be ruled out due to partial dissociation of 2 into the silylene and pyridine.